11.1A Notes Intro to Circles

DEFINITION: A CIRCLE is the set of all points that are equidistant from a fixed point, called the CENTER.

The <u>DISTANCE</u> between the <u>CENTER</u> and any <u>POINT</u> on the circle is called the <u>radius</u>.

STANDARD FORM OF A CIRCLE: $(x-h)^2 + (y-k)^2 = r^2$ Where (h, k) is the <u>Center</u> and r is the <u>radius</u>.

Example 1:

a) Write the equation of a circle with a center (7, -3) and a radius of 6.

$$(x-7)^2 + (y+3)^2 = 36$$

b) Write the equation of a circle centered at the origin with radius of 11. (o, o)

$$\chi^2 + y^2 = 121$$

Example 2: Identify the center and radius of each circle.

a)
$$(x-3)^2 + y^2 = \frac{25}{49}$$

radius =
$$\frac{5}{7}$$

b)
$$(x - .5)^2 + (y - .6)^2 = 81$$

radius =
$$\frac{9}{}$$

Example 3: Given the graph, write the equation of the circle

b)

a)

$$\chi^2 + y^2 = 49$$

Center
$$(4,-2)$$

 $r=6$

$$(x-4)^2+(y+2)^2=36$$

Example 4: Graph the circle.

a)
$$(x-3)^2 + (y+4)^2 = 4$$

Radius = $\frac{2}{(3, -4)}$

b)
$$(x+5)^2 + y^2 = 4.5$$

Radius $\sqrt{4.5} = 2.12$
Center = (-5.0)

Example 5: Write the equation for a circle with center at the origin & a point on the circle (1, 4).

Sketch a picture: What do we need to find? radius

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$(1-0)^{2} + (4-0)^{2} = r^{2}$$

$$(1)^{2} + (4)^{2} = r^{2}$$

$$1+16 = r^{2}$$

$$17 = r^{2}$$

$$x^{2} + y^{2} = 17$$

Example 6: Write the equation for a circle with center (-2, 3) and a point on the circle (1, -1).

$$(x+a)^{2} + (y-3)^{2} = r^{2}$$

$$(1+a)^{2} + (-1-3)^{2} = r^{2}$$

$$3^{2} + (-4)^{3} = r^{2}$$

$$9+16 = r^{2}$$

$$25 = r^{2}$$

$$(x+a)^{2} + (y-3)^{2} = 25$$

Circles Worksheet-Review

Goal: $(x-h)^2 + (y-k)^2 = r^2$ Rewrite each equation as a standard form equation of a circle. Then state the center and the radius of the circle.

1) $x^2 - 4x + y^2 + 6y = 1 = 0$ $x^2 - 4x + y^2 + 6y = 1 = 0$ $x^2 - 4x + y^2 + 6y = 1 = 0$ $x^2 - 4x + y^2 + 6y = 1 = 0$ $x^2 - 4x + y^2 + 6y + y^2 = 1 + 4 + 9$ $(-2)^2 - 10x + 14y + 65 = 0$ $(-5)^2 - 10x + 25 + y^2 + 14y + 49 = -65$ $(-5)^2 - (-5)^2 - (-5)^2 + (-5)^2$

$$(5)x^2 + y^2 + 8x + 20y + 112 = 0$$

Polar Coordinate System

A polar coordinate system is a plane with a point O, the pole, and a ray from O, the polar axis, as shown in Figure 6.35. Each point P in the plane is assigned **polar coordinates** (r, θ) as follows: r is the directed distance from O to P, and θ is the directed angle whose initial side is the polar axis and whose terminal side is the ray \overrightarrow{OP} .

FIGURE 6.35 The polar coordinate system.

FIGURE 6.38 Polar and rectangular coordinates for P.

P is on terminal side of 0 IF ryo IF r<0 p is on terminal side of 6+17 (opp. dir.)

Let the point P have polar coordinates (r, θ) and rectangular coordinates (x, y). Then

$$x = r\cos\theta, \qquad r^2 = x^2 + y^2,$$

$$y = r \sin \theta$$
, $\tan \theta = \frac{y}{x}$.

Polar Coordinate Plane

From Geometry
Equation of a circle $(x-h)^2+(y-K)^2=\Gamma^2$ center of circle (h,K) radius of circle r

From Algebra Complete the square

$$(\frac{b}{2})^2$$

Polar (r, θ) rectangular (x, y)

Converting from Polar to Rectangular Coordinates & If angle & is a unit-circle angle

Ex 1) Use an algebraic method to find the rectangular coordinates of the point with the given polar coordinates. 91ve Approximate the exact solution values with a calculator when appropriate (Round two decimal places)

$$V.^{(a)} \stackrel{(3,\frac{4\pi}{3})}{(3,\frac{4\pi}{3})} \quad X: \text{rcos} \theta$$

$$\left[\begin{array}{c|c} 1, -\sqrt{3} \end{array}\right]^2$$

$$(a)$$
 (-3, -29 π /7)

$$\mathbf{v}_{\mathsf{d}}^{\mathbf{.c}}$$

$$(-2\cdot -1, -2\cdot 0)$$

Ex 2) Rectangular coordinates of a point P are given. Use an algebraic method, and approximate exact solutions with a calculator when appropriate, to find all polar coordinates of P that satisfy the given condition. $C^2 = X^2 + Y$

(a)
$$[0,2\pi]$$

P = $(1,1)$

$$\Gamma^2 = 1^2 + 1^2$$
 $\int \Gamma^2 = \sqrt{2}$

$$\theta = \tan^{-1}(\frac{1}{1})$$
 ($\sqrt{10}$, 1.25) ($-\sqrt{10}$, -1.89)

$$b(-\pi \le \theta \le \pi)$$

$$r^2 = 1^2 + 3^2$$

tano = <u>9</u>

Values!